■ INTRODUCTION

It has been five years since outcomes data (course placements) related to the VC Mathematics Assessment Tests were last reviewed for predictive efficacy. This empirical re-validation study is focused on two specific areas:

Appropriateness of Cut Scores

Disproportionate Impact as it relates to Ethnicity

Within two years, Ventura College will be using CCCAssess for recommending placements in Mathematics courses. At that time, new validation studies will be conducted.

■ <u>SUMMARY</u>

Data in this study relate to:

Students who took a VC Assessment Test between May 20, 2014 and August 31, 2015

Students who were enrolled in one of six fall 2015 VC MATH courses

Ventura College uses **four** of the **MDTP** (Mathematics Diagnostic Testing Project) Assessment Tests:

ALG: Algebra Readiness; **EALG**: Elementary Algebra; **IALG**: Intermediate Algebra; **PCAL**: Pre-Calculus. For some courses, scores on either of two tests are used for recommended placement in courses.

• Appropriateness of Cut Scores

In fall 2015, VC offered instruction in **20** MATH courses. The **six** highest enrolled courses are the subjects of this portion of the study. Student course outcomes (success/failure) are compared to recommended placements based on Math Assessment Test scores. The table below indicates course success rates as a function of placement – i.e., whether students were placed **in**, or **below**, the course as a result of their Math Assessment Test scores.

The Standards, Policies and Procedures for the Evaluation of Assessment Instruments Used in the CCC states:

As related to empirical procedures, at a minimum the data should demonstrate that individuals who score above the cut score or within the score range identified have a greater expectancy of success (e.g., appear to be more prepared for the course based on instructor ratings, or a mid-term grade, or obtaining a C grade or higher) in a specific course for which placement recommendations are made than those who score below the score or score range. (Page 22)

For all **six** MATH courses, it was found that (for at least **one** of the tests used to assess course preparedness) the success rates of students <u>placed</u> in the course **exceeded** the success rates of students who had been placed <u>below</u> the course. (Success rate is the percentage of A, B, C, and P grades divided by all grades.)

Fall 2015	Math	Place	Placed in the Course			Below the	Course	Diff. in	Are Cut
	Assess			Success			Success	Success	Scores
Course	Test	Enrolled	Success	Rate	Enrolled	Success	Rate	Rates	Adequate?
MATH V10	ALG	113	161	70.2%	80	46	57.5%	12.7	Yes
MATH V01	ALG	93	56	60.2%	96	45	46.9%	13.3	Yes
	EALG	293	143	48.8%	13	7	53.8%	-5.0	No
MATH V03	EALG	128	77	60.2%	86	46	53.5%	6.7	Yes
	IALG	107	81	75.7%	69	32	46.4%	29.3	Yes
MATH V04	IALG	18	12	66.7%	59	30	50.8%	15.9	Yes
	PCAL	8	7	87.5%	15	8	53.3%	34.2	Yes
MATH V44	IALG	13	12	92.3%	90	62	68.9%	23.4	Yes
	PCAL	15	11	73.3%	15	11	73.3%	0.0	No
MATH V21A	PCAL	28	25	89.3%	29	24	82.7%	6.6	Yes

• Disproportionate Impact as it relates to Ethnicity

According to California Community Colleges *Matriculation/SSSP Handbook*:

For the purpose of assessment, **disproportionate impact** is when the percentage of persons from a particular racial, ethnic, gender, age, or disability group, who are directed to a particular service or course placement based on an assessment test or other measure is significantly different from the representation of that group in the population of persons being assessed, and that discrepancy is not justified by empirical evidence demonstrating that the assessment test or other measure is a valid and reliable predictor of performance in the relevant educational setting. (Chapter 2, page 2.6).

This section of the study examines Math Assessment Test placements to determine if there are any indications of disproportionate impact related to ethnicity. The table below indicates the number of assessed students by test and the numbers of assessed students who enrolled in fall 2015 Math courses.

Ventui MDTP	ra Colleg Assessn	ge nent Tests		<u>Assessed</u> May 20, 2014 through	<u>Assessed</u> and <u>Enrolled</u> in Fall 2015	Percent Assessed and Enrolled in Fall 2015
Test	Code	Description	Items	August 31, 2015	MATH Courses	MATH Courses
I	ALG	Algebra Readiness	50	2,045	612	30%
П	EALG	Elementary Algebra	50	1,736	755	43%
Ш	IALG	Intermediate Algebra	45	1,058	516	49%
IV	PCAL	Pre-Calculus	40	373	205	55%
		Totals and Average Per	centage	5,212	2,088	40%

Each test is divided into **three** cut-score ranges (placement categories) and each placement category has one or more recommended MATH courses associated with it. The Ventura College "Math Assessment Information Sheet" lists recommended placements in Math courses based on these placement categories (a copy of the information sheet is attached as an appendix to this report).

A Chi Square Analysis was performed for each of the **four** VC Math Assessment Tests to determine whether ethnicity was independent of (not related to) placement category.

Test I – ALG: Algebra Readiness Differential Placement, but <u>No</u> Disproportionate Impact Detected

The total calculated Chi-Square value of **24.94** <u>exceeds</u> the tabled Chi-Square statistic of **15.51** (df = 8), which indicates that there <u>was</u> differential placement in regards to ethnicity.

The success rates of three Black and 60 Hispanic students who placed *below* MATH V01 but who *enrolled in* MATH V01 were 33% and 43%, respectively. From these <u>*limited*</u> data, it does **not** appear that there were occurrences of disproportionate impact as regards ethnicity.

Test II – EALG: Elementary Algebra Disproportionate Impact Detected

The total calculated Chi-Square value of **53.43** <u>exceeds</u> the tabled Chi-Square statistic of **15.51** (df = 8), which indicates that there <u>was</u> differential placement in regards to ethnicity.

The success rates of one Black and 54 Hispanic students who placed *below* MATH V03 but who *enrolled in* MATH V03 were 100% and 52%, respectively. From these <u>*limited*</u> data, it appears that there may have been occurrences of disproportionate impact as regards ethnicity.

Test III – IALG: Intermediate Algebra <u>No</u> Disproportionate Impact Detected

The total calculated Chi-Square value of **13.84** is <u>below</u> the tabled Chi-Square statistic of **15.51** (df = 8), which indicates that there was <u>no</u> differential placement in regards to ethnicity.

Test IV – PCAL: Pre-Calculus

No Disproportionate Impact Detected

The total calculated Chi-Square value of **8.68** falls below the tabled Chi-Square statistic of **9.49** (df = 4), which indicates that there was <u>no</u> differential placement in regards to ethnicity.

■ MULTIPLE TESTS AND VALIDATION CONSIDERATIONS

The **four** MDTP Tests used by Ventura College for Math assessment/placement are discrete and discontinuous, as compared to the English Assessment Test (CTEP) which is three separate tests taken sequentially in one sitting. The following factors need to be considered when interpreting the results of this validation study.

- (1) Students chose which one of the four tests to take, which results in 17% to 25% of students receiving a placement message that advises them to "see a Counselor" or to take the next lower test Many of these students will then use their HS transcript to place into the desired Math class
- (2) Two MDTP tests can be used to assess/place in the same course

Additionally, only about 20% of students use an assessment test score for placement in a Math class. Many students completed the pre-requisite course at VC or took an equivalent course at another college.

■ <u>TABLE OF CONTENTS</u>

Item Page
Introduction1
Summary 1
Appropriateness of Cut Scores
Disproportionate Impact as it Relates to Ethnicity
Multiple Tests and Validation Considerations
MATH Course Enrollments and MDTP Tests4
Course Success Rates by Cut Scores
MATH V10
MATH V01
MATH V03
MATH V04
MATH V44
MATH V21A
Recommended Placements by Ethnicity
Test I – ALG: Algebra Readiness
Test II – EALG: Elementary Algebra
Test III – IALG: Intermediate Algebra
Test IV – PCAL: Pre-Calculus 11
Differential Placement
Test I – ALG: Algebra Readiness
Test II – EALG: Elementary Algebra

■ MATH COURSE ENROLLMENTS AND MDTP TESTS

The following table provides enrollment data on **fall 2015** MATH courses and the numbers of students in each course who took one/more of the **four MDTP** tests.

Fall 2015 Enrollments

This section indicates the number of enrolled students by MATH course and the number and percentage that were successful in each course.

Numbers of Students who Took MDTP Tests

This section shows the number of students in each course who took one/more MDTP tests during the period between May 20, 2014 and August 31, 2015. Highlighted cells indicate the MDTP tests that are <u>used</u> for assessment/placement in each course (other tests may have been taken). Several MATH courses use only <u>one</u> MDTP test for assessing and placing students (e.g., MATH V21A uses PCAL only). MATH V21B, V21C, V22, V23, and V90 do not use assessment test scores to determine placements. Enrollment in these courses is contingent upon satisfactory completion of the applicable pre-requisite course/s.

In this study, only the **six** MATH courses with highest enrollments had their success rates compared to the assessment test score ranges which would be used for recommending placements in the courses. The six MATH courses are: MATH V01, MATH V03, MATH V04, MATH V10, MATH V21A, and MATH V44. Course IDs for these courses are highlighted in the table.

▶ Note that many students who do <u>not</u> receive the MATH course placement that they desired use other measures (e.g., high school math course) to enroll in the desired MATH course.

	Fall	2015 Enrollm	nents	Numbers of Students who Took MDTP Tests				
	Number	Succe	essful	<u>Test I</u>	<u>Test II</u>	Test III	<u>Test IV</u>	Total
Course ID	Enrolled	Count	Rate	ALG	EALG	IALG	PCAL	Students
MATH V01	782	381	48.7%	189	311	28	1	529
MATH V02	24	21	87.5%	4	9	5	0	18
MATH V03	828	444	53.6%	97	214	177	14	502
MATH V04	401	217	54.1%	17	45	77	23	162
MATH V05	156	80	51.3%	6	23	23	5	57
MATH V10	447	284	63.5%	246	27	12	0	285
MATH V11A	48	35	72.9%	11	5	0	0	16
MATH V12	132	73	55.3%	8	28	29	0	65
MATH V13A	49	34	69.4%	5	9	3	0	17
MATH V20	119	71	59.7%	1	10	19	35	65
MATH V21A	214	147	68.7%	0	7	18	57	82
MATH V21B	108	44	40.7%	2	0	2	18	22
MATH V21C	87	66	75.9%	0	0	0	5	5
MATH V22	46	38	82.6%	0	0	0	2	2
MATH V23	40	26	65.0%	0	0	0	0	0
MATH V35	34	29	85.3%	4	4	8	1	17
MATH V38	37	36	97.3%	1	1	3	0	5
MATH V40	37	31	83.8%	2	3	8	1	14
MATH V44	710	456	64.2%	19	57	103	36	215
MATH V46	69	49	71.0%	0	2	1	7	10
Total	4,368	2,562	58.7%	612	755	516	205	2,088

COURSE SUCCESS RATES BY CUT SCORES

Assess	sessments Cut		Total	Success-	Success	
Test	Code	Scores	Recommended Courses	Students	ful	Rate
I	ALG	30 – 50	MATH V01, 01A, V11A, V30	5	2	40.0%
		20 – 29	MATH V10	161	113	70.2%
		0 - 19	We strongly advise you see a Counselor	80	46	57.5%
			Total	246	161	65.4%

• MATH V10 - Pre-Algebra (All students represented in this table were enrolled in MATH V10.)

Discussion

Students who placed in MATH V10 achieved a substantially <u>higher</u> success rate than students who scored below the cut-score range – 70.2% versus 57.5%, respectively (a 12.7 point, or 22%, difference).

• MATH V01 – Elementary Algebra (All students represented in this table were enrolled in MATH V01.)

Assess	ments	Cut		Total	Success-	Success
Test	Code	Scores	Recommended Courses	Students	ful	Rate
I	ALG	30 – 50	MATH V01 , 01A, V11A, V30	93	56	60.2%
		20 – 29	MATH V10	64	30	46.9%
		0 - 19	We strongly advise you see a Counselor	32	15	46.9%
			Total	189	101	53.4%
П	EALG	25 – 50	MATH V03, V02, V03A, V12, V13A, V35	5	3	60.0%
		11 – 24	MATH V01 , V01A, V11A, V30	293	143	48.8%
		0-10	Take Test I	13	7	53.8%
			Total	311	153	49.2%
			Grand Total	500	254	50.8%

Discussion

<u>ALG</u>

Students who placed in MATH V01 achieved a substantially <u>higher</u> success rate than students who scored below the cut-score range – 60.2% versus 46.9%, respectively (a 13.3 point, or 28%, difference).

EALG

Students who placed in MATH V01 recorded a <u>lower</u> success rate than students who scored below the cut score range – 48.8% versus 53.8%, respectively (a -5.0 point, or -9%, difference). There were <u>293</u> students within the cut-score range versus <u>13</u> students who scored below the cut-score range. The difference in success rates is <u>not</u> significant at the .05 level as the calculated Chi Square value of **0.68** falls below the tabled Chi Square statistic of **3.84**.

Chi Square Analysis

Assessment		Course C	(ß) Row			
Placement	9	Successful	No	t Successful	Totals	
Placed in MATH V01	Α	143	В	150	293	
Score below MATH V01	D	7	Е	6	13	
(α) Column Totals		150		156	306(y)	

	Expected Frequencies				Individual Chi Squares					
Cell	α>	(B÷	÷γ:	= ε	(ε-	λ)	² ÷ ε =	= χ ²		
Α	150	293	306	143.63	143.63	143	143.63	0.00		
В	156	293	306	149.37	149.37	150	149.37	0.00		
С	150	13	306	6.37	6.37	7	6.37	0.62		
D	156	13	306	6.63	6.63	6	6.63	0.06		
Total Students			306.00		Total Ch	ni Square	0.68			

Tabled Chi Square Statistic 3.84 with df = 1 (df = (2 - 1) x (2 -1) = 1 x 1 = 1)

 ε = Expected values λ = Actual values

Assess	ments	Cut		Total	Success-	Success
Test	Code	Scores	Recommended Courses	Students	ful	Rate
П	EALG	25 – 50	MATH V03 , V02, V03A, V12, V13A, V35	128	77	60.2%
		11 – 24	MATH V01, V01A, V11A, V30	80	44	55.0%
		0 - 10	Take Test I	6	2	33.3%
			Total	214	123	57.5%
111	IALG	27 – 45	MATH V04, V05, V38, V40, V44, V45	1	1	100.0%
		18 – 26	MATH V03 , V02, V03A, V12, V13A, V35	107	81	75.7%
		0 - 17	Take Test II	69	32	46.4%
			Total	177	114	64.4%
			Grand Total	391	237	60.6%

• MATH V03 - Intermediate Algebra (All students represented in this table were enrolled in MATH V03.)

Discussion

EALG

Students who placed in MATH V03 achieved a modestly <u>higher</u> success rate than students who scored below the cut-score range – 60.2% versus 53.5%, respectively (a 6.7 point, or 13%, difference).

(Below cut-score – Students: 80 + 6 = 86; Successful: 44 + 2 = 46; Success rate: 46 ÷ 86 x 100 = .535 or 53.5%)

IALG

Students who placed in MATH V03 achieved a substantially <u>higher</u> success rate than students who scored below the cut-score range – 75.7% versus 46.4%, respectively (a 29.3 point, or 63%, difference).

• MATH V04 - College Algebra (All students represented in this table were enrolled in MATH V04.)

Assess	ments	Cut		Total	Success-	Success
Test	Code	Scores	Recommended Courses	Students	ful	Rate
III	IALG	27 – 45	MATH V04, V05, V38, V40, V44, V45	18	12	66.7%
		18 – 26	MATH V03, V02, V03A, V12, V13A, V35	31	20	64.5%
		0 - 17	Take Test II	28	10	35.7%
			Total	78	42	53.8%
IV	PCAL	26 – 40	MATH V21A, V52, CS V17	0		
		18 – 25	MATH V04, V05, V20, V 38, V40, V44, V45, V46	8	7	87.5%
		0 - 17	Take Test III	15	8	53.3%
			Total	23	15	65.2%
			Grand Total	101	57	56.4%

Discussion

<u>IALG</u>

Students who placed in MATH V04 achieved a substantially <u>higher</u> success rate than students who scored below the cut-score range – 66.7% versus 50.8%, respectively (a 15.9 point, or 31%, difference).

(Below cut-score – Students: 31 + 28 = 59; Successful: 20 + 10 = 30; Success rate: 30 ÷ 59 x 100 = .508 or 50.8%)

PCAL

Students who placed in MATH V04 achieved a substantially <u>higher</u> success rate than students who scored below the cut-score range – 87.5% versus 53.3%, respectively (a 34.2 point, or 64%, difference).

Assess	ments	Cut		Total	Success-	Success
Test	Code	Scores	Recommended Courses	Students	ful	Rate
III	IALG	27 – 45	MATH V44 , V04, V05, V38, V40, V45	13	12	92.3%
		18 – 26	MATH V03, V02, V03A, V12, V13A, V35	38	27	71.1%
		0 - 17	Take Test II	52	35	67.3%
			Total	103	74	71.8%
IV	PCAL	26 – 40	MATH V21A, V52, CS V17	6	5	83.3%
		18 – 25	MATH V44 , V04, V05, V20, V38, V40, V45, V46	15	11	73.3%
		0 - 17	Take Test III	15	11	73.3%
			Total	36	27	75.0%
			Grand Total	139	101	72.7%

• MATH V44 – Elementary Statistics (All students represented in this table were enrolled in MATH V44.)

Discussion

IALG

Students who placed in MATH V44 achieved a substantially <u>higher</u> success rate than students who scored below the cut-score range – 92.3% versus 68.9%, respectively (a 23.4 point, or 34%, difference).

(Below cut-score – Students: 38 + 52 = 90; Successful: 27 + 35 = 62; Success rate: 62 ÷ 90 x 100 = .689 or 68.9%)

PCAL

The success rate for students who placed in MATH V44 was the <u>same</u> as for students who scored below the cut-score range – 73.3% for each group (a 0.0 point, or 0%, difference).

• MATH V21A - Calculus with Analytic Geometry I (All students represented in this table enrolled in MATH V21A.)

Assess	ments	Cut		Total	Success-	Success
Test	Code	Scores	Recommended Courses	Students	ful	Rate
IV	PCAL	26 - 40	MATH V21A , V52, CS V17	28	25	89.3%
		18 – 25	MATH V04, V05, V20, V38, V40, V44, V45, V46	15	14	93.3%
		0 - 17	Take Test III	14	10	71.4%
			Total	57	49	86.0%

Discussion

Students who placed in MATH V21A achieved a modestly <u>higher</u> success rate than students who scored below the cut-score range – 89.3% versus 82.7%, respectively (a 6.6 point, or 8%, difference).

(Below cut-score – Students: 15 + 14 = 29; Successful: 14 + 10 = 24; Success rate: 24 ÷ 290 x 100 = .82.7 or 82.7%)

RECOMMENDED PLACEMENTS BY ETHNICITY

• <u>Test I</u> – ALG: Algebra Readiness

		ALG Test Scores	30 – 50	20 – 29	0 – 19
		MATH Course	V01, V01A,	V10	Advised to
		Placements	V11A, V30		see Counselor
Ethnic Groups		Number	Placement	Placement	Placement
Code	Description	Taking Test	Percentages	Percentages	Percentages
Α	Asian	20	35%	45%	20%
В	Black or African-American	13	15%	46%	38%
н	Hispanic	358	23%	51%	26%
N	Native American	1		100%	
Р	Pacific Islander	1		100%	
Т	Multi-Ethnic	21	38%	38%	24%
W	White	194	42%	41%	17%
Х	Unreported	4	25%	75%	
Total and Average Percentages		612	30%	48%	22%
	Total Numbers of Students	612	182	291	139

Discussion

Because <u>three</u> of the Ethnic Groups had very low representation, they were omitted from the analysis. The <u>five</u> ethnic groups highlighted in <u>yellow</u> were evaluated for disproportionate impact using the Chi-Square Test. The total calculated Chi-Square value of **24.94** <u>exceeds</u> the tabled Chi-Square statistic of **15.51** (df = 8), which indicates that there <u>was</u> differential placement in regards to ethnicity.

See Differential Placement, Test I – ALG: Algebra Readiness on page 12.

Chi Square Analysis

Ethnic		Recommended Placements									
Groups		V01, etc.		V10	See	e Counselor	Totals				
Asian	Α	7	В	9	С	4	20				
Black or African-American	D	2	Ε	6	F	5	13				
Hispanic	G	83	н	183	I	92	358				
Multi-Ethnic	J	8	К	8	L	5	21				
White	М	81	Ν	80	0	33	194				
(α) Column Totals		181	286 139			606 (γ)					

<u>Tabled Chi Square Statistic</u> 15.51 with df = 8

 $(df = (5 - 1) \times (3 - 1) = 4 \times 2 = 8)$

	E	vpoctod E	roquonci	06	In	dividual		20	Ethnic		MATH VO1 placements
	E.	xpected F	requenci	es		uiviuuai	Cill Square		Eunine	_	WATH VOI placements
Cell	α >	⟨ß÷	÷γ	= ε	(ε-	· λ)	÷÷ε=	= χ ²	Groups	λ÷ε	lower than expected
Α	181	20	606	5.97	5.97	7	5.97	0.18		1.17	
В	286	20	606	9.44	9.44	9	9.44	0.21	Asian		
С	139	20	606	4.59	4.59	4	4.59	0.08			
D	181	13	606	3.88	3.88	2	3.88	0.91		0.51	Actual MATH V01
E	286	13	606	6.14	6.14	6	6.14	0.00	Black		placements were 51%
F	139	13	606	2.98	2.98	5	2.98	1.37			of expected placements
G	181	358	606	106.93	106.93	83	106.93	5.36		0.77	Actual MATH V01
н	286	358	606	168.96	168.96	183	168.96	1.17	Hispanic		placements were 77%
I	139	358	606	82.12	82.12	92	82.12	1.19			of expected placements
J	181	21	606	6.27	6.27	8	6.27	0.48		1.28	
К	286	21	606	9.91	9.91	8	9.91	0.37	Multi-Eth		
L	139	21	606	4.82	4.82	5	4.82	0.01			
М	181	194	606	57.94	57.94	81	57.94	9.18		1.40	
N	286	194	606	91.56	91.56	80	91.56	1.46	White		
0	139	194	606	44.50	44.50	33	44.50	2.97			
Total Students 606.			606.01		Total Ch	ni Square	24.94	ε = Exp	ected va	lues λ = Actual values	

• <u>Test II</u> – EALG: Elementary Algebra

		EALG Test Scores	25 – 50	11 – 24	0 – 10
		MATH Course	V02, V03, V12,	V01, V11A,	
		Placements	V13A, V35	V30	Take Test I
Ethnic Groups		Number	Placement	Placement	Placement
Code	Description	Taking Test	Percentages	Percentages	Percentages
Α	Asian	22	55%	41%	5%
В	Black or African-American	16	19%	44%	38%
н	Hispanic	483	26%	68%	6%
N	Native American	2	0%	100%	0%
Р	Pacific Islander	0			
Т	Multi-Ethnic	26	50%	42%	8%
W	White	201	38%	59%	3%
Х	Unreported	5	60%	40%	0%
Total and Average Percentages		755	31%	63%	6%
	Total Numbers of Students	755	232	478	45

Discussion

Because <u>three</u> of the Ethnic Groups had very low representation, they were omitted from the analysis. The <u>five</u> ethnic groups highlighted in <u>yellow</u> were evaluated for disproportionate impact using the Chi-Square Test. The total calculated Chi-Square value of **53.43** <u>exceeds</u> the tabled Chi-Square statistic of **15.51** (df = 8), which indicates that there <u>was</u> differential placement in regards to ethnicity.

See Differential Placement, Test II – EALG: Algebra Readiness on page 12.

Chi Square Analysis

Ethnic		Reco	mme	ended Placem	ents		(ß) Row
Groups		V03, etc.		V01, etc.	Т	ake Test I	Totals
Asian	Α	12	В	9	С	1	22
Black or African-American	D	3	Е	7	F	6	16
Hispanic	G	124	Н	329	I	30	483
Multi-Ethnic	J	13	К	11	L	2	26
White	М	77	Ν	118	0	6	201
(α) Column Totals		229		474	474 45		

Tabled Chi Square Statistic 15.51 with df = 8 (df = (5 - 1) x (3 -1) = 4 x 2 = 8)

	E	xpected F	requenci	es	In	dividual	Chi Square	es	Ethnic		MATH V03 placements
Cell	α>	G B -	÷γ:	= ε	(ε-	λ)	² ÷ ε =	χ ²	Groups	λ÷ε	lower than expected
Α	229	22	748	6.74	6.74	12	6.74	4.10		1.78	
В	474	22	748	13.94	13.94	9	13.94	1.75	Asian		
С	45	22	748	1.32	1.32	1	1.32	0.77			
D	229	16	748	4.90	4.90	3	4.90	0.74		0.61	Actual MATH V03
E	474	16	748	10.14	10.14	7	10.14	0.97	Black		placements were <u>61</u> %
F	45	16	748	0.96	0.96	6	0.96	26.46			of expected placements
G	229	483	748	147.87	147.87	124	147.87	3.85		0.84	Actual MATH V03
н	474	483	748	306.07	306.07	329	306.07	1.72	Hispanic		placements were <u>84</u> %
I	45	483	748	29.06	29.06	30	29.06	0.30			of expected placements
J	229	26	748	7.96	7.96	13	7.96	3.19		1.63	
К	474	26	748	16.47	16.47	11	16.47	1.82	Multi-Eth		
L	45	26	748	1.56	1.56	2	1.56	0.12			
М	229	201	748	61.54	61.54	77	61.54	3.88		1.25	
N	474	201	748	127.37	127.37	118	127.37	0.69	White		
0	45	201	748	12.09	12.09	6	12.09	3.07			
		Total S	tudents	747.99		Total Ch	i Square	53.43	ε = Exp	ected va	lues λ = Actual values

• Test III – IALG: Intermediate Algebra

		IALG Test Scores	27 – 45	18 – 26	0 – 17
		MATH Course	V04, V05, V38,	V02, V03, V03A,	
		Placements	V40, V44, V45	V12, V13A, V35	Take Test II
Ethnic	Groups	Number	Placement	Placement	Placement
Code	Description	Taking Test	Percentages	Percentages	Percentages
Α	Asian	23	22%	35%	43%
В	Black or African-American	18	0%	39%	61%
н	Hispanic	308	9%	41%	50%
Ν	Native American	1			100%
Р	Pacific Islander	0			
т	Multi-Ethnic	23	9%	43%	48%
W	White	141	15%	48%	37%
х	Unreported	2	50%		50%
Total and Average Percentages		516	11%	42%	47%
	Total Numbers of Students	516	57	219	240

Discussion

Because <u>three</u> of the Ethnic Groups had very low representation, they were omitted from the analysis. The <u>five</u> ethnic groups highlighted in <u>yellow</u> were evaluated for disproportionate impact using the Chi-Square Test. The total calculated Chi-Square value of **13.84** is <u>below</u> the tabled Chi-Square statistic of **15.51** (df = 8), which indicates that there was <u>no</u> differential placement in regards to ethnicity.

Chi Square Analysis

Ethnic		Reco	mm	ended Placem	ents		(ß) Row
Groups	V0	4, V44, etc.		V03, etc.	т	ake Test II	Totals
Asian	Α	5	В	8	С	10	23
Black or African-American	D	0	Е	7	F	11	18
Hispanic	G	28	н	126	Т	154	308
Multi-Ethnic	J	2	К	10	L	11	23
White	М	21	Ν	68	0	52	141
(α) Column Totals		56		219 238			513 (γ)

Tabled Chi Square Statistic 15.51 with df = 8 (df = (5 - 1) x (3 -1) = 4 x 2 = 8)

Ex	xpected F	requenci	es	In	dividual	Chi Square	es	Ethnic		MATH V04 placements
α>	(ß÷	÷γ:	= ε	(ε-	λ) ²	² ÷ ε =	× χ ²	Groups	λ÷ε	lower than expected
56	23	513	2.51	2.51	5	2.51	2.47		1.99	
219	23	513	9.82	9.82	8	9.82	0.34	Asian		
238	23	513	10.67	10.67	10	10.67	0.04			
56	18	513	1.96	1.96	0	1.96	1.96		0.0	Actual MATH V04
219	18	513	7.68	7.68	7	7.68	0.06	Black		placements were <u>0</u> %
238	18	513	8.35	8.35	11	8.35	0.84			of expected placements
56	308	513	33.62	33.62	28	33.62	0.94		0.83	Actual MATH V04
219	308	513	131.48	131.48	126	131.48	0.23	Hispanic		placements were 83%
238	308	513	142.89	142.89	154	142.89	0.96			of expected placements
56	23	513	2.51	2.51	2	2.51	0.10		0.80	Actual MATH V04
219	23	513	9.82	9.82	10	9.82	0.00	Multi-Eth		placements were 80%
238	23	513	10.67	10.67	11	10.67	0.10			of expected placements
56	141	513	15.39	15.39	21	15.39	2.04		1.36	
219	141	513	60.19	60.19	68	60.19	1.01	White		
238	141	513	65.41	65.41	52	65.41	2.75			
	Total S	tudents	512.97		Total Ch	i Square	13.84	ε = Exp	ected va	lues λ = Actual values
	C C 56 219 238 56 219 238 56 219 238 56 219 238 56 219 238 56 219 238 56 219 238 56 219 238	x ß - a x ß - 56 23 23 - 219 238 23 - 56 18 - - 219 18 - - 219 18 - - 219 308 - - 219 308 - - 219 308 - - 219 23 - - 219 23 - - 219 23 - - 219 23 - - 219 141 - - 219 141 - - 219 141 - -	κ β ÷ γ s 56 23 513 513 219 23 513 238 23 513 238 23 513 56 18 513 219 18 513 219 18 513 219 18 513 219 18 513 238 308 513 219 308 513 219 308 513 238 308 513 219 23 513 219 23 513 219 23 513 219 23 513 219 23 513 219 141 513 219 141 513 219 141 513 238 141 513	Expected Fuencies α x β \cdot γ z ϵ 56235132.51219235139.822382351310.6756185131.96219185137.682381851333.62219308513131.48238308513131.48238308513142.8956235139.822382351310.675614151360.1921914151360.1923814151365.41	Expected FrequenciesIn α x β $\dot{\gamma}$ ε $($ ε 56235132.512.51219235139.829.822382351310.6710.6756185131.961.96219185137.687.682381851333.6233.62238308513131.48131.48238308513142.89142.8956235139.829.822192351310.6710.675614151360.1915.3921914151360.1960.1923814151365.4165.41Total Students512.97	Expected FrequenciesIndividual α x β $\dot{\gamma}$ ε $($ ε \cdot λ)56235132.512.515.5219235139.829.8282382351310.6710.671056185131.961.960219185137.687.6872381851333.6233.6228219308513131.48131.48126238308513142.89142.8915456235139.829.82102382351310.6710.67115614151360.1960.196823814151365.4165.4152Total Students512.97Total Students	Expected FrequenciesIndividual Chi Square α x β \div γ $=$ ϵ $\left($ ϵ $ \lambda$ $\right)^2$ \div ϵ $=$ 56235132.512.512.51552.51219235139.829.829.82889.822382351310.6710.6710010.6756185131.961.9601.96219185137.687.6877.682381851333.6233.622833.62219308513131.48131.48126131.48238308513142.89142.89154142.8956235139.829.821009.822382351310.6710.671110.675614151360.1960.196860.1923814151365.4165.415265.41Cotal Students512.975265.41	Individual Chi Squares α x β γ ε (ε λ) $\dot{\varepsilon}$ ε χ^2 56235132.512.5152.512.512.47219235139.829.8289.820.342382351310.6710.671010.670.0456185131.961.9601.961.96219185137.687.6877.680.062381851333.6233.622833.620.9456308513131.48131.48126131.480.23219308513142.89142.89154142.890.9656235130.829.82109.820.002192351310.6710.671110.670.1021923513142.89142.89154142.890.96562351310.6710.671110.670.102192351310.6710.671110.670.105614151360.1960.196860.191.0123814151365.4165.415265.412.7521914151365.4165.415265.412.7523814151365.4165.4152 <th>Individual Chi SquaresEthnic Groupsαx$\beta$$\gamma$=ε$($ε$\lambda$$\lambda$$z$$z$Ethnic Groups56235132.512.5152.512.47λ219235139.829.8289.820.34λ2382351310.6710.671010.670.04λ56185131.961.9601.961.96219185137.687.6877.680.062381851333.6233.622833.620.94219308513131.48131.48126131.480.23219308513142.89142.89154142.890.9656235130.829.82109.820.00219308513142.89142.89154142.890.9656235130.671.019.820.00Multi-Eth2192351310.6710.671110.670.102192351315.392115.392.0421914151360.1960.196860.191.0123814151365.4165.415265.412.7521914151365.4165.415265.412.75<</th> <th>Expected FrequenciesIndividual Chi SquaresEthnic Groups$\lambda \div \varepsilon$$\alphax\beta$$\div$$\gamma$$\varepsilon$($\varepsilon$$\lambda$)²$\div$$\varepsilon$$\chi^2$Groups$\lambda \div \varepsilon$56235132.512.5152.512.471.991.99219235139.829.8289.820.34Asian1.992382351310.6710.671010.670.040.0156185131.961.9601.961.961.96219185137.687.6877.680.0682381851333.6233.622833.620.94456308513131.48131.48126131.480.23456308513131.48134.8126131.480.234238308513142.89154142.890.96456235130.671.09.820.00423830851313.4813.48126131.480.2342382351310.6710.671110.670.1042382351315.392.115.392.0442382351315.3915.392115.392.04238141513</th>	Individual Chi SquaresEthnic Groupsαx β γ =ε $($ ε λ λ z z Ethnic Groups56235132.512.5152.512.47 λ 219235139.829.8289.820.34 λ 2382351310.6710.671010.670.04 λ 56185131.961.9601.961.96219185137.687.6877.680.062381851333.6233.622833.620.94219308513131.48131.48126131.480.23219308513142.89142.89154142.890.9656235130.829.82109.820.00219308513142.89142.89154142.890.9656235130.671.019.820.00Multi-Eth2192351310.6710.671110.670.102192351315.392115.392.0421914151360.1960.196860.191.0123814151365.4165.415265.412.7521914151365.4165.415265.412.75<	Expected FrequenciesIndividual Chi SquaresEthnic Groups $\lambda \div \varepsilon$ α x β \div γ ε (ε λ) ² \div ε χ^2 Groups $\lambda \div \varepsilon$ 56235132.512.5152.512.471.991.99219235139.829.8289.820.34Asian1.992382351310.6710.671010.670.040.0156185131.961.9601.961.961.96219185137.687.6877.680.0682381851333.6233.622833.620.94456308513131.48131.48126131.480.23456308513131.48134.8126131.480.234238308513142.89154142.890.96456235130.671.09.820.00423830851313.4813.48126131.480.2342382351310.6710.671110.670.1042382351315.392.115.392.0442382351315.3915.392115.392.04238141513

• Test IV – PCAL: Pre-Calculus

		PCAL Test Scores	26 – 40	18 – 25	0 – 17
		MATH Course Placements	V21A, V52, CS V17	V04, V05, V20, V38, V40, V44 V45, V46A	Take Test III
Ethnic (Groups	Number	Placement	Placement	Placement
Code	Description	Taking Test	Percentages	Percentages	Percentages
Α	Asian	28	43%	18%	39%
В	Black or African-American	2			100%
н	Hispanic	113	19%	32%	49%
Ν	Native American	1		100%	
Р	Pacific Islander	0			
Т	Multi-Ethnic	2		50%	50%
W	White	58	24%	38%	38%
Х	Unreported	1			100%
Total and Average Percentages		205	23%	32%	45%
	Total Numbers of Students	205	48	65	92

Discussion:

Because <u>five</u> of the Ethnic Groups had very low representation, they were omitted from the analysis. The <u>three</u> ethnic groups highlighted in <u>yellow</u> were evaluated for disproportionate placement using the Chi-Square Test. The total calculated Chi-Square value of **8.68** falls below the tabled Chi-Square statistic of **9.49** (df = 4), which indicates that there was <u>no</u> differential placement in regards to ethnicity.

Chi Square Analysis

Ethnic		Reco	mme	ended Placem	ents		(ß) Row
Groups	۱	/21A, etc.	V0	4, V44, etc.	Та	ake Test III	Totals
Asian	Α	12	В	5	С	11	28
Hispanic	D	22	Е	36	F	55	113
White	G	14	Н	22	Т	22	58
(α) Column Totals		48		63 88			199 (γ)

Tabled Chi Square Statistic 9.49 with df = 4 (df = (3 - 1) x (3 -1) = 2 x 2 = 4)

	E	xpected F	requenci	es	In	dividual	Chi Square	es	Ethnic		MATH V21A placements
Cell	α >	(ß.	÷γ:	= ε	(ε-	λ)	² ÷ ε =	: χ ²	Groups	λ÷ε	lower than expected
Α	48	28	199	6.75	6.75	12	6.75	4.08		1.78	
В	63	28	199	8.86	8.86	5	8.86	1.68	Asian		
С	88	28	199	12.38	12.38	11	12.38	0.15			
D	48	113	199	27.26	27.26	22	27.26	1.02		0.81	Actual MATH V21A
E	63	113	199	35.77	35.77	36	35.77	0.00	Hispanic		placements were 81%
F	88	113	199	49.97	49.97	55	49.97	0.51			of expected placements
G	48	58	199	13.99	13.99	14	13.99	0.00		1.00	
н	63	58	199	18.36	18.36	22	18.36	0.72	White		
I	88	58	199	25.65	25.65	22	25.65	0.52			
Total Students 198.			198.99		Total Ch	i Square	8.68	ε = Exp	ected va	lues λ = Actual values	

DIFFERENTIAL PLACEMENT

• Test I – ALG: Algebra Readiness

The ALG Test is used to assess student preparation for placement in the *lowest* level math classes:

Score Range Recommendation

- 30 50 MATH V01 Elementary Algebra, etc.
- 20 29 MATH V10 Pre-Algebra
- 0 19 Advised to see a Counselor

MATH V01 is the highest recommendation available to a student taking the **ALG**. As such, this evaluation is concerned with determining whether there might be disproportionate impact based on ethnicity related to **MATH V01** placement recommendations.

The Chi Square Analysis related to the **ALG** (page 8) indicated that **Black** and **Hispanic** students may have been <u>disproportionately</u> recommended to placement in MATH V10 or to "see a Counselor." In the table below, success rates were calculated for students who took the ALG, placed <u>below</u> MATH V01, but <u>took</u> MATH V01.

Ethnic Group	Enrolled	Successful	Success Rate	Unsuccessful Percentage
Asian	2	2	100.0%	0.0%
Black	3	1	33.3%	66.7%
Hispanic	60	26	43.3%	56.7%
Multi-Ethnic	2	0	0.0%	100.0%
White	29	16	55.2%	44.8%
Total	96	45	46.9%	53.1%

Of the **three Black** students took **MATH V01**, only **33%** were successful; of the **60** Hispanic students who enrolled in **MATH V01**, only **43%** were successful. From these <u>*limited*</u> data, it does **not** appear that there were occurrences of disproportionate impact as regards ethnicity.

• Test II – EALG: Elementary Algebra

The EALG Test is used to assess student preparation for placement in pre-collegiate level math classes:

Score Range Recommendation

- 25 50 MATH V03 Intermediate Algebra, etc.
- 11 24 MATH V01 Elementary Algebra, etc.
- 0 10 Take Test I

MATH V03 is the highest recommendation available to a student taking the **EALG**. As such, this evaluation is concerned with determining whether there might be disproportionate impact based on ethnicity related to **MATH V03** placement recommendations.

The Chi Square Analysis related to the **EALG** (page 9) indicated that **Black** and **Hispanic** students may have been <u>disproportionately</u> recommended to placement in MATH V10 or to "Take Test I." In the table below, success rates were calculated for students who took the EALG, placed <u>below</u> MATH V03, but <u>took</u> MATH V03.

Ethnic Group	Enrolled	Successful	Success Rate	Unsuccessful Percentage
Asian	4	4	100.0%	0.0%
Black	1	1	100.0%	0.0%
Hispanic	54	28	51.9%	48.1%
Multi-Ethnic	6	2	33.3%	66.7%
White	21	11	52.4%	47.6%
Total	86	46	53.5%	46.5%

The **one Black** student who enrolled **MATH V03** was successful; of the **54** Hispanic students who enrolled in **MATH V03**, **52%** were successful. From these <u>*limited*</u> data, it appears that there **may** have been occurrences of disproportionate impact as regards ethnicity.

Information Sheet MATH ASSESSMENT

Ventura College Assessment Office - (805) 289-6402

The intent of assessment testing is to help you determine the course(s) most appropriate for you, based on your skill level.

Assessment test Instrument: Mathematics Diagnostic Testing Program (MDTP)

TEST I / ALGEBRA READINESS: 50 Questions / 60 Minutes		
SCORE	RECOMMENDED COURSES	
30 - 50	MATH V01, V01A, V11A, V30	
20-29	MATH V10	
0-19	We strongly advise you see a Counselor	

TEST II / ELEMENTARY ALGEBRA: 50 Questions / 60 Minutes		
SCORE	RECOMMENDED COURSES	
25 - 50	MATH V02, V03, V03A, V12, V13A, V35	
11 - 24	MATH V01, V01A, V11A, V30	
0-10	Take Test I	

TEST III / INTERMEDIATE ALGEBRA: 45 Questions / 60 Minutes		
SCORE	RECOMMENDED COURSES	
27-45	MATH V04, V05, V38, V40, V44, V45	
18 - 26	MATH V02, V03, V03A, V12, V13A, V35	
0-17	Take Test II	

TEST IV / PRE-CALCULUS: 40 Questions / 60 Minutes		
SCORE	RECOMMENDED COURSES	
26 - 40	CSV17; MATH V21A, V52	
18-25	MATH V04, V05, V20, V38, V40, V44, V45, V46A	
0-17	Take Test III	

NOTE:

Students who score at the lower end of any score range are encouraged to enroll in a course at the next lower level to improve chances for success. Students who have not taken a math course in the past two (2) years are also encouraged to enroll in a course at the next lower level.

Students with learning disabilities, or those experiencing learning difficulties, may contact the Educational Assistance Center (EAC) for additional information at (805) 289-6300.